Natural Gas as a Bridge to a Renewable Energy Future

Presented by:

Robert A. Stokes

Vice President, Research and Deployment

Gas Technology Institute

Des Plaines, IL 60018

at

Natural Gas/Renewable Energy Hybrids Workshop NREL, Golden, Colorado August 21-22, 2001

Natural Gas-Renewable Energy Alliance

-American Bioenergy Association	Geothermal Energy Association		
-American Gas Association	Interstate Natural Gas Association of America		
-American Wind Energy Association	-Kyocera Solar		
-BP Amoco	-National BioEnergy Industries Association		
-Coalition for Gas-Based Environmental Solutions	-Plug Power		
-Columbia Energy Group	-Solar Energy Industries Association		
Distributed Power Coalition of America	-Solar Turbines, Inc.		
•Future Energy Resources Corporation (FERCO)	-Sempra Energy		
-Gas Technology Institute	-Spire Corporation		

The Denver Post "Natural Gas Falls from its Pedestal"

U.S. Wellhead Gas Prices - Have Averaged \$2.00/mcf For 15 Years (Despite Ups and Downs)

Approaches to Increasing U.S. Gas Supply

- LNG Infrastructure Conventional Gas
 - Exploration
 - Infield Reserve Growth
 - Enhanced Recovery
- Deepwater Offshore
- Artic
- Deep Onshore Gas
- Tight Gas
- Coalbed Methane
- Shale Gas
- Substitute Natural Gas (Coal, Biomass, etc.)
- Gas Hydrates

Peak-Load Generation & Gas Supply Simple-Cycle Combustion Turbine

- Assume: 15% capital recovery, \$350/kW capital cost, \$4/MBTU fuel price, 10,000 Btu/kWh heat rate, .5 cents/kWh O&M
- Profitable at 955 hrs/year peaking operation for electricity sales at \$100/MWh
- At \$1000/MWh electricity price, only 55 hrs/year required to be profitable

Natural Gas Combined-Cycle Baseload Power Generation Economics

- Assume: 15% capital recovery, \$500/kW capital cost, \$4/MBTU fuel price, 6,700 Btu/kWh heat rate (LHV 57% efficiency), .5 cents/kWh O&M
- At 85% annual operating factor, power cost is 4.2 cents/kWh
- Very short lead time for construction and minimal regulatory risk compared to coal or nuclear power plants

World Natural Gas Utilization

- Large growth in use due to substantial supply base and improving delivery options: super pipelines, LNG, gas-to-liquids
- Over 5000 Quads of known reserves half is "stranded gas"
- 16 Quads per year currently being flared or reinjected – if recovered or converted to synthetic Diesel would be ~10% of current world oil use

U.S. Gas Demand Projection Through 2015

Natural Gas – Renewable Energy Hybrids

- Industrial End-use represents ~42% of US Natural Gas Consumption
- Bioenergy (heat, fuelgas, or oil) could substitute for natural gas in most industrial applications

Industrial End Uses by Fuel Type (1995)

Applications for Co-utilization of Natural Gas and Biomass

- Co-firing Natural Gas and Biomass in (Stoker) Boilers
- Co-firing (or Direct Combustion) of Biomass LCV Gas in Energy Conversion Devices (Burners, Engines and Gas Turbines)
- Biomass Gasification Followed by Co-firing of Fuel Gas and Natural Gas in Energy Conversion Devices (Burners, Engines, and Gas Turbines)
- Pyrolysis of Biomass Followed by Co-firing Liquid Fuels and Natural Gas - (Burners, Engines, and Turbine Engines)

GTI METHANE de-NOX® Reburning Process for Stoker Boilers

A reburn technology using 5% to 25% natural gas heat input for combustion improvement and 50-70% NO_x reduction in coal-, biomass-, and MSW-fired stoker boilers

Natural Gas – Renewable Energy Hybrids

- Electrical Generation is the Most Rapidly Growing Market for Natural Gas
- Wind and Photovoltaics could be Combined with Natural Gas to Firm Up the Intermittent Nature of Renewable Power Plants
- Longer-term Renewables can Provide Most of the Hydrogen to power Fuel Cells

Wind Turbine Cost-of-Energy Trends

1979: 40 cents/kWh

2000: 4 - 6 cents/kWh

NSP 107 MW Lake Benton wind farm 4 cents/kWh (unsubsidized)

- Increased
 Turbine Size
- R&D Advances
- Manufacturing Improvements

2004: 3 - 5 cents/kWh

Bob Thresher - NREL

Photovoltaics Efficiency Trends

Basic Fuel Cell Operation

Basic
Reactions $H_2 \longrightarrow 2H^+ + 2e^- \qquad O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$

Typical Planar Fuel Cell

Fuel Cell Attributes

	PEMFC	PAFC	MCFC	SOFC
	Proton Exchange Membrane	Phosphoric Acid	Molten Carbonate	Solid Oxide
Electrolyte	Sulfonic acid in polymer	Orthophosphoric acid	Lithium and potassium carbonates	Yttrium-stabilized zirconia
Charge Carrier	H+	H+	CO ₃ =	O=
Operating Temperature	175 F Warm Water	390 F Hot Water	1,200 F High-Pressure Steam	1,300 – 2,000 F High-Pressure Steam
Cogeneration Heat	Minimal	Modest	High	High
Efficiency (LHV)	< 40%	35 - 45%	45 – 60%	45 – 60%
Reforming	External	External	Internal or external	Internal or external

Fuel Cell/Gas Turbine Hybrid Systems

Goals

- Synergistic Benefits from Gas Turbines & Fuel Cells
- 70% (LHV) Electric Efficiency
- 20MW or Less
- Commercialization by 2010

Players

- S-W/Rolls-Royce
- S-W/Solar Turbines
- FCE/Rolls-Royce
- FCE/Capstone
- SOFCo/Ingersoll-Rand

Honda FCX V3 Hydrogen Fuel Cell Car

- Ballard 60kW PEM Fuel Cell
- On-board hydrogen storage metal hydride tank (La-Ni5)
- Photovoltaic Panels –
 water electrolysis for hydrogen production

Long-Term Energy Picture Historical & Projected Pattern of Use

Fossil Fuel Transition to Hydrogen

- Coal enjoys large reserves, stable supplies, and low prices – need cleaner, more efficient CO2 sequestration technology
- Oil will maintain its dominant position for fossil fuels – cleaner fuels, more heavy oil upgrading, Hydrogen and power generation in refineries
- Natural gas is fossil fuel "wild card" large supply with improved options to get to market
 - Convergence with power generation
 - DG cogeneration
 - Fuel cells could hasten transition to Hydrogen

Fossil Fuel Utilization in the 21st Century

- Fossil Fuel Supplies are Adequate to Continue to Provide for World Energy Needs through the 21st Century
- Technology will increasingly make Coal, Oil, and Natural Gas intraconvertable.
- Deregulation, the "dash to gas" (NGCC) & Efficiency Advantages of Cogeneration/ Polygeneration ultimately favors gasification
- Polygeneration gasification to make synthesis gas for steam/power and syngas chemicals & fuels.

Shell Sustained Growth Scenario

